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Abstract 
A computer simulation technique is used to predict 
the lattice energies, structures and physical properties 
of magnesium silicate spinelloids from given inter- 
atomic potentials. Two types of potential models are 
considered, a fully ionic model, which includes elec- 
trostatic, short-range and dispersive terms, and a par- 
tially ionic model, in which fractional charges are 
allocated to the component ions and a Morse function 
is included to describe the effect of covalency in the 
Si-O bond. The calculated energies of the spinelloid 
polytypes are analysed in terms of the interaction 
energies between component structural units. The 
calculated spinelloid energetics are discussed in the 
light of recently developed models of polytypism. The 
predicted values of the interaction energy terms are 
tested by using them to calculate the energy of a 
1/21101](010) stacking fault in the naturally occurring 
magnesium silicate spinelloid wadsleyite. The calcu- 
lated stacking-fault energies are in excellent agree- 
ment with the value inferred from transmission 
electron microscopy. 

I. Introduction 
Many crystal structures may be considered to be 
composed of one or more component structural units 
or modules. If the relative arrangement of these 
modules may be varied, the resulting phases are 
known as polytypes. Polytypism is therefore a special 
form of polymorphism. There need be no constraint 
upon the chemistry or structure of the modules in- 
volved (Thompson, 1981). However, to be considered 
polymorphic, the various modes of module stacking 
should not affect the composition of the phase as a 
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whole. Polytypism is a common phenomenon, and 
examples of polytypic materials include the well 
known SiC, ZnS and mica phases, as well as a wide 
range of other mineral families such as the spinelloids, 
pvroxenes and pyroxenoids. 

Polytypic series or families characteristically con- 
tain a large number of structures, which exhibit a 
variety of module stacking sequences. Simple shorter- 
period modifications are most commonly observed, 
although polytypes may have very-long-period 
repeats, in some cases in excess of 1000 A. Because 
the polytypes of a given compound are composed of 
virtually identical structural units, the free-energy 
differences between them are small. As a result, the 
transformation kinetics between polytypes is often 
slow, and it is usually difficult to establish thermody- 
namic equilibrium. Undoubtedly, many metastable 
phases have been synthesized in such polytypic sys- 
tems. However, recent careful experimentation upon 
the SiC and spinelloid systems (Jepps & Page, 1983; 
Akaogi, Akimoto, Horioka, Takahashi & Horiuchi, 
1982) has established that at least some polytypes 
have thermodynamically definable fields of stability. 

A variety of theories have been advanced to explain 
why some polytypic sequences appear to be more 
stable or occur more frequently than others (Pandey 
& Krishna, 1983). Theories based upon growth or 
kinetic considerations (e.g. Frank, 1951) may well 
explain how certain metastable sequences are formed; 
however, thermodynamically based models are 
required to explain the observed equilibrium phases 
found in systems such as SiC and the spinelloids. 
Among the first of such theories was that of 
Jagodzinski (1954), who argued that long-peroid 
polytypes are stabilized by vibrational entropy effects. 
More recent workers (Hazen & Finger, 1981; Price, 
1983a; Smith, Yeomans & Heine, 1984; Price & Yeo- 
mans, 1984), however, have developed the idea that 
the relative stability of polytypic structures may be 
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determined by considering effective interactions 
between the component structural units. To explain 
why long-period polytypic phases are found and to 
model the nature of the observed phase transforma- 
tions between polytypes, it is necessary to appeal to 
interactions between structural units that are effective 
over a distance greater than that between first-nearest- 
neighbour modules. In fact, it appears that competing 
interactions between first and further neighbour units 
are a pre-requisite for the development of long-period 
structures (Price & Yeomans, 1984). 

Price (1983a) analysed the stability of spinelloids 
and other polytypic structures by considering the 
effect of interactions between first-, second- and third- 
nearest-neighbour structural units. He found that 
phases with periods of up to six modules could be 
stable at zero temperature. Subsequently, Smith et al. 
(1984) and Price & Yeomans (1984) provided an 
explanation of the observed equilibrium behaviour 
of polytypic phases in terms of the axial next-neigh- 
bour Ising or ANNNI model. This statistical 
mechanics model, originally developed to describe 
magnetic systems (Elliot, 1961; Fisher & Selke, 1981), 
invokes only first- and second-neighbour interactions, 
but includes entropic effects (non-zero temperature), 
in an attempt to describe observed polytypic 
behaviour. In their use of the ANNNI model, Smith 
et al. (1984) and Price & Yeomans (1984) proposed 
that the basic polytypic structural unit can be written 
as a Hamiltonian with competing interactions. The 
resulting model provides a simple equilibrium 
description of polytypism, in which short-range coup- 
lings can lead to the existence of polytypes with 
very-long-period stacking sequences. Other important 
features of polytypism are also explained by this 
model: notably that only a specific set of polytypes 
are stable for a given compound, that reversible phase 
transitions are observed, and that polytypes with short 
stacking sequences occur most frequently. 

The models of Price (1983a), Smith et al. (1984) 
and Price & Yeomans (1984) all assume that the 
internal energy of any given polytypic structure is a 
function both of the internal energy of the component 
structural modules and of the energy of interaction 
between neighbouring modules. These interactions 
may be due to strain effects resulting from either 
ion-size mismatch or local electrostatic-charge imbal- 
ances at the interfaces between the structural units. 
They assume that the internal energy of the modules 
is invariant, and that the difference in the free energies 
of the polytypic phase is solely dependent upon the 
interaction energies between structural units and the 
temperature. Despite the fact that these assumptions 
are fundamental to their models, neither Price 
(1983a), Smith et al. (1984) nor Price & Yeomans 
(1984) were able to justify them fully or to provide 
estimates of the magnitude of the interaction-energy 
terms. To establish the validity of these models, it is 

essential that the assumptions upon which they are 
based should be tested. 

The energetics of polytypic phases could be investi- 
gated by a number of theoretical and experimental 
techniques. It would be possible to test the above 
assumptions by analysing the energetics of a polytypic 
family inferred from detailed calorimetric studies of 
the phases involved. Such a study has been performed 
by Akaogi & Navrotsky (1984) in their investigation 
of the nickel aluminosilicate spinelloid family. 
Although their results are excellent, problems would 
generally be expected with such an experimental 
approach, since it is virtually impossible to obtain 
pure unfaulted samples of a specific polytype (e.g. 
Davies & Akaogi, 1983). These structural faults or 
polytypic intergrowths will influence calorimetric 
measurements and may well obscure the subtleties of 
polytype energetics. An alternative approach to direct 
energy measurements is to use computer modelling 
techniques to simulate polytypic structures, and use 
the calculated energies of these simulated phases as 
a basis for the analysis of polytypic energetics. 
Recently Catlow (1977), Catlow & Norgett (1978) 
and Catlow, Cormack & Theobald (1984) have shown 
that atomistic modelling techniques, based upon 
energy minimization methods, can be used success- 
fully to predict the structure, and energetic and phy- 
sical properties of simple ionic compounds. The inter- 
nal energy and physical properties of the materials 
are calculated from pair-wise additive interatomic 
potentials, which include electrostatic, short-range 
and instantaneous dipole-dipole interaction terms. 
This approach has been extended by Catlow, Thomas, 
Parker & Jefferson (1982), Parker (1983), Parker, 
Catlow & Cormack (1984), Price & Parker (1984) and 
Matsui & Busing (1984) to the study of silicates and 
other phases with more complex bonding. 

In this paper we will expand upon the work of 
Price & Parker (1984), and will present an analysis 
of the energetics of spinelloid polytypes that will 
enable the assumptions made by previous workers 
about the systematic energetics of these phases to be 
tested. Specifically, we will consider the Mg2SiO4 
spinelloid family, both because spinelloids in general 
exhibit an interesting and well characterized range of 
polytypic structures, and because the magnesium sili- 
cate system is particularly important geologically, as 
it includes the two minerals ringwoodite and wadsley- 
ite, which make up the majority of the transition zone 
of the Earth's mantle. In § 2 we describe the structural 
characteristics of spinelloid polytypes and develop a 
notation for their description. An outline of the com- 
putational techniques and potential models used in 
this study is provided in § 3, while in § 4 the results 
of the calculations are presented. These results are 
discussed, in the light of the models of Price (1983a), 
Smith et al. (1984) and Price & Yeomans (1984), 
in §5. 
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2. Spinelloid structures 

The structural features of spinelloids have been 
described in a series of papers by Ma & Sahl (1975), 
Horioka, Takahashi, Morimoto, Horiuchi, Akaogi & 
Akimoto (1981), Horioka, Nishiguchi, Morimoto, 
Horiuchi, Akaogi & Akimoto (1981), Horiuchi, 
Akaogi & Sawamoto (1982) and Akaogi et al. (1982). 
The family takes its name from its most commonly 
occurring member, the spinel structure, from which 
the other structures in the family can be derived. Like 
spinel, spinelloids generally have an AB204 
stoichiometry, and have structures that are based 
upon a nearly cubic close-packed arrangement of 
oxygen ions, within which cations occupy both 
tetrahedrally and octahedrally coordinated sites. 
Hyde, White, O'Keette & Johnson (1982) and 
Horiuchi et al. (1982) point out that the cations define 
a 'basic structural unit' within the oxygen framework 
(Fig. la)  from which all spinelloids can be construc- 
ted. The arrangement of the basic structural units is 
invariant in two orthogonal directions, and generates 
an infinite sheet, part of which is shown in Fig. l(b). 
Variations in the packing of this sheet in the third 
dimension give rise to the observed range of spinelloid 
structures. In the spinel structure, the component 
spinelloid sheets are packed parallel to (110). Adja- 
cent sheets are related by a glide operator of the type 
1 / 4[ 1 i2 ] (110), which when regularly repeated gener- 
ates the spinel structure shown in Fig. l(c). In the 
idealized spinel structure (having oxygens in perfect 
cubic eutaxy) 1/4[112] is an anion-anion vector, so 
that the anion arrangement is unchanged by its 
operation. However, half of the octahedrally coordi- 
nated cations and all of the tetrahedrally coordinated 

(a) (b) 

t;t  

[ool] 

~ J - -  [1101 
tirol SPI NEL 

(c) 

03 
M9 

~ [OlO] Mg2 
[100] 

BETA-PHASE 
(a) 

Fig. 1. Perspective views of the spinelloid component units and 
structures. (a) The 'basic structural unit' (after Horiuchi et al., 
1982); (b) the constituent sheet from which all spinelloids can 
be formed; (c) the spinel structure; (d) the fl-phase structure. 

cations are translated to normally empty sites by this 
vector and thus interfaces between successive glide- 
related spinelloid sheets can be considered to be 
antiphase boundaries (Hyde et al., 1982). Con- 
sequently, if the basic structural unit shown in Fig. 
1 (a) is represented by the arrow illustrated, the stack- 
ing sequence along [110] of spinel can be described 
by the code . . .  ~1'$1'..- (Horiuchi et al., 1982). In 
addition to the glide operator, Price, Putnis & Smith 
(1982), Hyde et al. (1982) and Horiuchi et al. (1982) 
noted that successive idealized spinelloid sheets may 
also be related by a mirror or twin operator. Thus, 
for example in the idealized/3-phase polymorph of 
Mg2SiO4 wadsleyite (Fig. ld),  basic spinelloid struc- 
tural units are alternately related by mirror and glide 
operators, and can be represented by the stacking 
c o d e . . .  1'I'~ . . . .  

There are naturally an infinite number of stacking 
sequences that can be generated by combining mirror 
and glide operators. Several notations have been 
developed to describe these sequences (e.g. Hyde et 
al., 1982; Price, 1983a), but we will use the one 
introduced by Fisher & Selke (1981) to describe any 
given repeating sequence of structural units. In a 
repeating sequence such as this: 

• .. TT$~TI'$~$TI'~,$1'I'$~..., (1) 

consecutive mirror-related units, symbolized by 
sequences of parallel arrows, will be termed bands. 
The repeating sequence in (1) comprises three bands 
of two arrows (or 2-bands) followed by one 3-band. 
This sequence will be denoted (2223) or (233). Thus, 
the spinel sequence, . . .  1'$T~ --- ,  will be denoted by 
(1), the wadsleyite sequence by (2), and more gen- 
erally ( n l n 2 . . .  nm) will refer to a structure where the 
repeating sequence is made up of m bands of length 
nl, n2 , . . . ,  nm. This  notation is similar to the Zhdanov 
notation used in the description of many polytypic 
materials. 

Important structural differences exist between 
spinelloid units that are related by a mirror operation 
and those that are related by a glide operation. The 
mirror operator generates corner-linked cation 
coordination tetrahedra, but the glide operator results 
in the formation of isolated tetrahedral groups. Thus 
in the Mg2SiO4 spinel polymorph ringwoodite, in 
which Si is tetrahedrally coordinated and Mg octahe- 
drally coordinated, only isolated SiO4 units occur, 
but in wadsleyite Si207 groups are formed. Generally, 
bands of length n will be characterized by the 
development of corner-sharing chains of Si tetrahedra 
of the type SinO3n+]. The development of corner- 
sharing tetrahedra produces changes in the coordina- 
tion of the oxygen atoms in the spinelloid structure. 
In ringwoodite, every oxygen is bonded to one Si and 
three Mg cations; however, in wadsleyite the two 
oxygens that lie in the plane of the mirror have a 
different coordination: O(1 ) being coordinated by five 
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Mg cations and 0(2) by two Si and one Mg cation 
(Fig. 1 d). This configuration produces a partial viola- 
tion of Pauling's second rule, or the electrostatic 
valence rule, so that the charge balances on O(1) and 
0(2) become - ]  and +~ respectively. This charge 
asymmetry is manifested in structures such as wads- 
leyite by a local distortion away from oxygen close 
packing. It is this variation in oxygen coordination, 
with its resultant structural strains, that makes the 
two spinelloid stacking operators energetically non- 
equivalent, and which is implicitly analysed by Price 
(1983a) and Price & Yeomans (1984) when they 
consider the energy of interaction between first and 
further neighbour spinelloid units. 

It has been noted that neighbouring spinelloid 
structural units may be orientated in the same sense 
(represented by the code I'T or ~ )  or in the opposite 
sense (1'$) or (~1')- The proportion of ith-neighbour 
pairs of each type within any possible stacking 
sequence is restricted by the relationship 

z~. ,  + z . . ,  + z t~,, + z~,., = 1, (2) 

where Ztt.i and Z~,,i are the fraction of ith-neighbour 
layers within the stacking sequence that have the same 
orientation (mirror related), and Zt,.i and Z,,,~ are 
the proportions of ith-neighbour layers that have the 
opposite orientation (glide related). Thus, for the 
spinel structure, (1), which has a stacking code 
• . .  t ~ t l T ~ . . . ,  z~t,1 = z , . ,  = 0 ,  z , , ,  = z , . ,  = 0 . 5 ,  
Z---r1,.= = Z~,,2 = 0"5, Z-.r,,2 = Z,,.2 = O, etc. 

Price (1983a) argued that the total ground-state 
energy of any given stacking sequence, per layer in 
that sequence, can be expressed as 

E = - X  ( z . . , s . . ,  + z . . , s . . ,  
i 

+ z . . d . . ,  + z~t.,~..,) + E,. (3) 

where J1'1',~ and J**.i are the interaction energies 
between ith-neighbour layers that have the same 
orientation, Jl',,~ and J,l',~ are the interaction energies 
between ith-neighbour layers orientated in the 
opposite sense, an~l Er is the internal energy of a 
spinelloid layer. However, for all polytypic structures 
of this type Jtl',~ = J**,~ and Jtl,,~ = JJ, t.i, so we can write 

E = E ( z d , - J , , , , ) +  E, (4) 
i 

= E z d, + E<~>, (5) 
i 

where Ji = JyLi-- ½(J,*,i + J*t,i), Zi = Zt,,i + Z,t,i, and 
E<~> is the lattice energy of the (o 0 structure. This 
formulation is analogous to that used by Price & 
Yeomans (1984) in which the ground-state energy per 
spinelloid unit was written as 

E = - ½ N  ~, J, X LjLj+, + Er, (6) 
i j 

where N is the number of layers in the repeating 

sequence, and Li = + 1 or -1  if a given layer is in a 
state 1' or ~ respectively. In this case 

and 

E<~>= E, -½ Y. J,. (8) 
i 

In the following sections, we will attempt to quan- 
tify the energies of interaction (J~) between spinelloid 
units, by using interatomic potentials designed to 
reproduce their structural characteristics and the lat- 
tice energies of a variety of spinelloid polytypes. 

3. Potential models 

We have developed two sets of interatomic potentials 
to describe spinelloid structures, one of which is a 
fully ionic potential and the other a partially ionic 
model. The fully ionic potential used in this study is 
represented by the expression 

Vii(r) = qiqjr-' + f (  Bi + Bj) 

xexp [(A, + A j -  r) / (B,  + B/)] 

- C i j r  - 6 ,  (9) 

where qi and qj are the formal point charges associ- 
ated with atoms i and j, r is the interatomic distance, 
Ai, j and B~,j (with units of length) are empirically 
derived terms related to the relative sizes and com-  
pressibilities of the atomic species, f is a constant 
with dimensions of energy per unit length, and C o is 
a term to describe the attractive instantaneous dipole- 
dipole interactions between i and j. 

It is well established that bonding in silicates is not 
fully ionic (e.g. Pauling, 1960). Consequently, in addi- 
tion to using a fully ionic model in which q~ and t b 
are integral numbers, we model the energetics of the 
magnesium silicate spinelloids using a partially ionic 
potential in which the q~ terms are allowed to be 
non-integral (Price & Parker, 1984). In this model the 
effect of covalent bonding between Si and O atoms 
is described explicitly by the addition of a Morse 
term to the potential, with the form 

Vo(r) = D0{ex p [ - 2 E 0 ( r -  r*)] 

- 2 e x p [ - E q ( r - r * ) ] } ,  (10) 

in which r* is the equilibrium Si-O bond length (taken 
as 1.63 A), D o is the empirically determined Si-O 
covalent-bond strength, and E o is a constant deter- 
mined by the vibrational behaviour of the Si-O bond, 
which was calculated to be 1.975,~ -1 from the 
vibrational spectrum of the Si-O diatomic molecule 
(Herzberg, 1950). 

Price & Parker (1984) used the programs W M I N  
(Busing, 1981) and M E T A P O C S  (Catlow et al., 1984) 
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Table 1. Potential parameters 

[The  terms Ai in potent ia l  P1 are cor rec ted  values and  not  those  

Terms in P1 
O 
Mg 
Si 

Extra term in P l a  
o(1) 

Terms in P4 
O 
Mg 
Si 

Extra terms in P4a 
O(1) 
0(2) 
Mg(2) 

mi squo ted  in Price & Parker  (1984).] 

A, B i 
Charge (A) (A) 

-2 .0  1.1228 0.0745 
+2.0 2.3003 0.2200 
+4.0 3.1057 0.3412 

-2 .0  1.1228 0.0745 

-1.208 1.4745 0.0568 
+1.726 1-6297 0.1969 
+1.380 1.0763 0.1706 

Co- Dsi-° 1 
(kJ mol -Q A s) (kJ mol- ) 

5796.6 

2690.0 

430.8 

-1.665 1.6060 0.0833 
-0.740 1.4858 0.0655 
+1.715 1.5397 0.1731 

250.8 

to determine the optimum values of the variable terms 
in a number of potentials developed to describe inter- 
atomic forces in magnesium orthosilicates. These pro- 
grams vary the potential coefficients until the sum of 
the squares of the first derivatives of the lattice energy 
with respect to the atomic coordinates and lattice 
parameters is minimized. In a second mode, the pro- 
grams can use a set of coefficients for a potential to 
predict the corresponding minimum-energy structure. 
This structural minimization can be carded out under 
totally unconstrained conditions (equivalent to a state 
of zero confining pressure), or under conditions 
equivalent to the effect of a given hydrostatic pressure. 
The program METAPOCS can also be used to calcu- 
late the dielectric and elastic constants of a perfect 
lattice from a given potential, using the standard 
relationships between these constants and the second 
derivatives of the lattice energy with respect to the 
atomic coordinates. 

By fitting potential parameters to the X-ray-deter- 
mined structure of forsterite, the olivine structure 
polymorph of Mg2SiO4, Price & Parker (1984) investi- 
gated a range of potential models. They found that 
partially ionic models were generally the most suc- 
cessful in describing the Mg2SiO4 system, being able 
not only to reproduce the zero-pressure structural and 
physical properties of forsterite and ringwoodite, but 
also to model their pressure dependence. The partially 
ionic model P4 (Table 1) developed by Price & Parker 
(1984) was the basis for one of the potentials used 
in this study. This potential possesses fractional ionic 
charges that compare well with those inferred by 
Fujino, Sasaki, Tak6uchi & Sadanaga (1981) from 
detailed electron-density studies on forsterite. Poten- 
tial P4 reproduces the forsterite and ringwoodite cell 
volumes to within 3 and 0.3% respectively, and the 
predicted Si-O and Mg-O bond lengths in forsterite 
have a root-mean-square error, when compared with 
the observed values, of only 0.004 and 0.025/~ respec- 
tively. In addition, this potential predicts the elastic 

Table 2. Observed and calculated structural data for 
wadsleyite 

Obs* P1 P l a  P4 P4a 

a (A) 5.698 5.643 5.655 5.668 5.695 
b (/~,) 11-438 11.546 1 1 . 5 7 1  11.539 11.508 
c (/~) 8.257 8.163 8.148 8.342 8.381 
V (,~?) 537.67 529.70 533.16 545.59 549.27 

O(1) z 0.2166 0.2049 0.2073 0.2173 0.2109 
0(2) z 0.7164 0.6976 0.6971 0.6956 0.7034 
0(3) y 0.9900 0.9847 0.9847 0-9847 0.9890 

z 0.2558 0.2667 0.2669 0.2607 0.2564 
0(4) x 0.2615 0.2777 0.2777 0.2582 0.2600 

y 0.1225 0.1184 0.1182 0.1204 0.1210 
z 0.9925 0.9831 0.9827 0.0023 0-9931 

Mg(2) z 0.9701 0.9620 0-9620 0.9265 0.9598 
Mg(3) y 0-1276 0.1285 0.1282 0.1176 0.1290 
Si y 0.1198 0.1156 0.1157 0.1228 0.1173 

z 0.6168 0.6148 0.6143 0.6078 0.6134 

zlH (kJ) 6"8 20"0 3"1 75"0 4.3 

* Structural data 
from Navrotsky & 

from Horiuchi & Sawamoto (1981 ), thermochemical data 
Akaogi (1984). 

Table 3. Observed and calculated Si-O and Mg-O 
bond lengths in fl- Mg2SiO4 (in ~ ) 

Obs P1 P l a  P4 P4a 

Si-O(4) (2) 1.632 1.488 1.485 1.649 1.633 
0(3) (1) 1.638 1.508 1.513 1.656 1-639 
0(2) (1) 1.701 1.693 1.694 1.640 1.703 

I* 0.121 0.121 0.040 0.001 

Mg(1)-O(1) (4) 2-046 2-084 2.088 2.018 2.034 
0(3) (2) 2.115 2.183 2.182 2.182 2.153 

Mg(2)-O(1) (1) 2.035 1-982 1.992 2.426 2-104 
0(4) (4) 2-093 2.159 2.158 2.185 2.115 
0(2) (1) 2.095 2.189 2.195 1.926 2.149 

Mg(3)-O(l) (2) 2.016 2.024 2.026 2.102 2.018 
0(3) 2.123 2.184 2.185 2-090 2.151 
0(4) (2) 2.128 2.188 2.187 2.067 2.155 

I* 0.057 0.058 0.118 0.030 

constants of forsterite and ringwoodite to within 15 
and 20% of the measured values. Also used in this 
study was the fully ionic potential, P1 (Table 1), 
developed by Price & Parker (1984). Although Price 
& Parker found that fully ionic potentials do not 
model the silicates well (typically giving inaccurate 
predictions of Si-O bond lengths and predicted elastic 
constants that are too hard), they found that the 
potential P1 reproduced the energetics of the mag- 
nesium orthosilicates satisfactorily, and that the 
calculated lattice energies were in good agreement 
with those inferred from thermochemistry (Parker, 
1983). 

When P1 was used to calculated the wadsleyite 
structure, a good agreement between predicted and 
observed cell volume was obtained (Table 2). The 
calculated energy difference between ringwoodite and 
wadsleyite was 20.0kJmo1-1 compared with the 
measured value of 6.8 kJ mo1-1 (Navrotsky & Akaogi, 
1984). However, as found in the study of forsterite 
and ringwoodite, the details of the wadsleyite struc- 
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ture are not modelled well by the fully ionic potential, 
with root-mean-square errors in the Si-O and Mg-O 
bond lengths of 0.121 and 0.057 A respectively (Table 
3). The partially ionic model, P4, appears to be only 
a little better than P1 when applied to wadsleyite, 
predicting a cell volume in error by 1.5%, and a 
predicted energy difference between ringwoodite and 
wadsleyite of 75-0 kJ mol -~ (Table 2). Although this 
model gives smaller root-mean-square errors in the 
predicted Si-O bond lengths, the predicted shapes of 
the Mg-O coordination polyhedra are less accurate 
than those of P1, with a root-mean-square error in 
the Mg-O bond length of 0.118 ,~ (Table 3). 

A more detailed analysis of the failure of the P4 
potential indicates that it models poorly the atoms 
that lie in the plane of the mirror operator [viz O(1), 
0(2) and Mg(2), Fig. ld] .  The reason for this failure 
is not difficult to understand. The different coordina- 
tion of O(1) and 0(2) means that their bonding and 
hence the interatomic forces they experience are 
different from those of 0(3) and 0(4) (the non- 
bridging oxygens of the 8i207 group). As a result, the 
forces acting on O(1) and 0(2) are not described by 
the terms in the interatomic potential P4, which only 
apply to oxygen atoms coordinated by one Si and 
three Mg atoms. To overcome this problem, we 
refined new parameters for atoms O(1), 0(2) and 
Mg(2) by fitting to the X-ray-determined structure of 
fl-Mg2SiO4 (Horiuchi & Sawamoto, 1981), and to the 
measured energy difference between wadsleyite and 
ringwoodite (Navrotsky & Akaogi, 1984). 

The optimum values for the coefficients in potential 
P4a are given in Table 1. The partial ionic charge 
determined for Mg(2) is virtually the same as that 
obtained for Mg in potential P4, but the charges on 
O(1) and 0(2) are changed considerably from that 
of oxygen in P4, with Zo~)=-1 .665  and Zoo2)= 
-0.740. These charges are reasonable since O(1) is 
not involved in covalent Si-O bonds, but forms only 
Mg-O bonds (generally considered to be almost fully 
ionic), while 0(2) is more involved with covalent 
bonding and would be expected to exhibit a smaller 
ionic charge. With the increased number of param- 
eters in potential P4a, increased accuracy of the 
structural prediction is to be expected (Table 2), and 
is indeed reflected by root-mean-square errors in the 
Si-O and Mg-O bond lengths of 0.001 and 0.030 A 
respectively (Table 3). A similar partially ionic poten- 
tial has recently been developed by Matsui & Busing 
(1985) to describe fl-MgSiO4. The accuracy of their 
potential is comparable to that of P4a. 

Since this study is concerned specifically with the 
energetics of the spinelloids, a modified fully ionic 
model was also developed to obtain a calculated 
energy difference between the wadsleyite and ring- 
woodite polymorphs in closer agreement with the 
observed value. The resulting potential, P l a  
(Table 1), only differs from P1 by having a value 

Table 4. Observed and calculated elastic constants, 
bulk modulus K and shear modulus i.t for fl-MgSiO4 

(in TPa) 

Obs P1 a P4a  

ct t 0.360 0.414 0.382 
C22 0"383 0"404 0"363 
c33 0.273 0-291 0.302 
c~ 0.112 0.109 0-080 
cs5 0.118 0.120 0.090 
c~6 0.098 0.093 0.108 
C12 0"075 0"099 0" 140 
Cl3 0"110 0"123 0"123 
¢23 0" 105 0" 129 0" 127 

K 0"177 0"201 0-203 
p. 0-115 0"115 0"100 

* Data from Sawamoto et aL (1984). 

for the O(1)-O(1) van der Waals coefficient of 
2690.0 kJ mol -~ A6. The potential P1 a predicts a free- 
energy difference between wadsleyite and ringwood- 
ite of 3.1 kJ mo1-1, but in all other respects is identical 
to potential P1. In Table 4 the calculated elastic 
constants of wadsleyite are compared with the 
recently measured values (Sawamoto, Weidner, 
Sasaki & Kumazawa, 1984). Both P4a and P l a  
reproduce these values well, having root-mean-square 
errors in their predicted bulk moduli (calculated using 
the Voigt relationship) of 15 and 14% respectively. 

We conclude that, in their separate ways, potentials 
P1 a and P4a both represent adequate models of the 
two known Mg2SiO4 spinelloids. We therefore feel 
that they will produce realistic results when applied 
to other spinelloid structures, and that they can be 
used to model the systematics of spinelloid energetics. 
Therefore, in the next section we use both of these 
potentials to investigate the energetics of magnesium 
silicate spinelloids. 

4. Spinelloid energetics 

The programs W M I N  and METAPOCS were used 
to calculate the lattice energies of five spinelloid poly- 
types (Table 5). The optimum minimum-energy struc- 
tures of these spinelloids were calculated either by 
starting from an idealized structure or from X-ray- 
determined data of isostructural nickel aluminosili- 
cate spinelloids. All the calculated cell data for the 
hypothetical magnesium silicate spinelloids were rea- 
sonable, with a = 5.7, b = n2.85 and c ~- 8.3 A, where 
n was the number of spinelloid units in the repeating 
sequence. The calculated Si-O and Mg-O bond 
lengths were similarly all comparable with those 
calculated for ringwoodite and wadsleyite. 

As expected, potentials P4a and Pla  both predict 
that as the number of corner-sharing SiO4 tetrahedra 
increases above two the lattice energy decreases. 
Potential P4a predicts that, of the phases investi- 
gated, (2) is the most stable spinelloid configuration 
at 0 K and zero pressure, while potential P1 a predicts 
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Table5. Calculated spinelloid lattice energies (in 
kJmo1-1) 

Table 6. Calculated interaction energy terms 
(in kJ mo1-1) 

Z 1 Z 2 Z 3 Z 4 P l a  P 4 a  P l a  P 4 a  

(1) 1"0 0"0 1"0 0"0 -19 600" 15 -8687"08 Jt -24" 17 -66"26 
(2) ~ 1-0 ~ 0"0 -19 603'23 -8691"35 J2 -10"84 -37"27 
(12) 2 2 0-0 2 -19 604.23 -8690"65 J3 8"62 0"29 
(13) ~ ½ ½ 0"0 -19 597"80 -8672"73 -/4 5"56 -0"77 
(3) ~ 32- 1.0 -23 -19 587.58 -8668.27 E<oo> -19 584.61 -8621.11 

that under these conditions (12) should be more stable 
than (2) by 1.0 kJ mo1-1. The (12) magnesium silicate 
spinelloid has never been reported in nature, although 
local development of this stacking configuration has 
been seen in high-resolution electron microscopy 
studies (Price, 1983b). Since all Mg2SiO4 spinelloids 
are metastable with respect to olivine at zero pressure 
and temperature it is not possible to check whether 
the prediction made by P1 a is correct. 

The values of Zi (i -< 4) for the spinelloid structures 
under consideration were determined by inspection, 
and are given in Table 5. These values of Zi and the 
calculated lattice energies were used to calculate the 
interaction energies Ji, for i-< 4, which are shown in 
Table 6. The fact that Jl and -/2 are calculated to have 
the largest magnitudes is in accord with the intuitively 
held belief that longer-range interactions are less sig- 
nificant than those between nearest neighbours. 
Nevertheless, the calculations indicate that interac- 
tion energies are still significant between fourth- 
nearest neighbours or equivalently over a distance of 
->11 A. Interestingly, Cormack, Tasker & Catlow 
(1982) have found that interactions over distances as 
great as 50 A play a significant role in determining 
the relative positions of crystallographic shear planes 
in non-stoichiometric oxides; therefore the findings 
for spinelloids need not be surprising. 

Both potentials predict that the signs of the first 
two interaction terms should be negative, but P4a 
predicts magnitudes for these two terms that are a 
factor of three or four larger than those predicted by 
Pla. Potential P4a also predicts that J3 and J4 are 
an order of magnitude smaller than J~ and J2, but 
values of J3 and J4 obtained with Pla  are of the same 
order as those calculated for the nearer-neighbour 
interactions. The magnitude of J~ predicted by poten- 
tial Pla  is - 0 . 1 %  of the total lattice energy, while 
P4a predicts it to be ---0.8% of the total energy. To 
assess the absolute accuracy of our calculations, and 
to determine whether their relative differences are 
significant, it is vital to have some way of comparing 
our results with some other measure of the energetics 
of interaction between spinelloid units. This can be 
achieved by using our calculated Ji values to deduce 
the energy of stacking faults in wadsleyite. These 
calculated stacking-fault energies can then be com- 
pared with values inferred from transmission electron 
microscopy. 

The perfect wadsleyite structure has a stacking code 

• • • 1'1'$$1'1'$$ . . . .  (11) 

The structure and hence the stacking code can be 
locally altered by the introduction of a stacking fault. 
Wadsleyite has been observed frequently to carry 
stacking faults of the type 1/21101](010) (Price, 
1983b: M a d o n &  Poirier, 1983), which locally modify 
the structure so that its stacking code is described by 

• • • 1"~$$1'$1'1' . . . .  (12) 

If (5) is valid, the energy of one such stacking fault 
can be calculated by determining the difference in 
the interaction energy that it introduces. For interac- 
tions up to and including the fourth neighbours, it 
follows from Table 5 that the ground-state energy per 
N spinelloid layers of the perfect wadsleyite structure 
is 

E<E>=O'5NJI+ NJE+O'5NJ3+ NE<~>. (13) 

The development of a 1/21101](010) stacking fault in 
wadsleyite changes this energy to 

E<2> = (0 .5N + 1)Jl + ( N - 2 ) J 2  + ( 0 . 5 N -  1)./3 

+ 4 J 4  + NE<~>, (14) 

giving a zero-temperature stacking-fault energy of 

EFAULT = J1 - 2J2-  -/3 + 4J4-  (15) 

Using the values of Ji from Table 6 to evaluate 
(15), the potentials Pla  and P4a predict values for 
the 1/21101](010) stacking-fault energy of 11.13 and 
4.94kJ mo1-1 respectively. Normally stacking-fault 
energies are expressed in terms of a surface energy, 
tr, with units of energy per area. The stacking fault 
considered lies on (010), which has a unit-cell cross- 
sectional area of 5.6 × 8.3 A. The calculated stacking- 
fault energies can consequently be re-expressed in 
appropriate units as 40 and 18 mJ m -2 respectively. 

In wadsleyite, stacking faults of the type 1/21101] 
(010) occur between the two partial dislocations that 
form when a [001](010) dislocation dissociates thus 
(Price, 1983b: Madon & Poivier, 1983): 

[001]-> 1/2[i01] + 1/21101]. (16) 

An array of such dissociated dislocations, with 
leading and trailing partials linked by a length of 
1/21101](010) stacking fault, is shown in Fig. 2. The 
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equilibrium distance between the leading and trailing 
partial dislocation depends upon the surface energy, 
tr, of the stacking fault that links them, according to 
the well known relationship (e.g. Hull, 1968) 

d = Gb, .  b2/2"rrtr, (17) 

where d is the distance between the trailing and 
leading partials, G is the shear modulus of the phase, 
and bl. be is the dot product of the Burgers vectors 
of the two partial dislocations. From transmission 
electron microscopic observations such as the one 
shown in Fig. 2, d typically has a value of 1000 A. 
For wadsleyite, t3 = 0.115 TPa and b~. b2 = 9.2 A2 for 
the two partial dislocations concerned. The resulting 
value for the energy of a 1/2[ 101 ](010) stacking fault, 
inferred from transmission electron microscopy, 
is therefore 17 mJ m -2. The agreement between the 
stacking-fault energies inferred from lattice-simu- 
lation calculation and those deduced from electron 
microscopy is excellent, and strongly supports the 
view that the calculated values of the interaction 
energy between spinelloid units are meaningful and 
accurate. 

5. Discussion 

The calculations described above support the 
assumptions made by Price (1983a), Smith et al. 

\ ,  
x 

00 

1 

Fig. 2. Stacking faults of the type 1/21101](010) in wadsleyite 
formed by the dissociation of [001] dislocations into [101] and 
[101] partial dislocations. The dislocations occur on a subgrain 
boundary between two wadsleyite grains that are topotactically 
related. The wadsleyite microstructures are more fully described 
by Price (1983b). 

(1984) and Price & Yeomans (1984) that the system- 
atics of polytype energetics are described by (6). The 
approaches of these workers to the analysis of poly- 
typism were similar yet distinct. They all analysed 
the energies of polytypic structures in terms of the 
interaction energies between component units, but 
chose to neglect different terms in their descriptions 
of the factors that determine which polytypic modifi- 
cations are adopted. Price (1983a) chose not to con- 
sider explicitly the effect of temperature on the stabil- 
ity of polytypic phases, but explained the variety of 
observed polytypic modifications in terms of ground- 
state diagrams of a model with first-, second- and 
third-nearest-neighbour interactions. Smith et al. 
(1984) and Price & Yeomans (1984) chose to ignore 
the effect of interactions between third and further 
neighbours, but explicitly included entropic effects 
by considering non-zero temperatures. The results of 
the computer simulation described above suggest that 
a combination of the two approaches may best model 
polytypism in the magnesium silicate spinelloids. 

In the ANNNI  model, considered by Smith et al. 
(1984) and by Price & Yeomans (1984), the develop- 
ment of complex polytypic structures is predicted to 
occur only at elevated normalized temperatures. In 
this model, the normalized temperature (TN) can be 
defined in terms of the absolute temperature (T) and 
Jo, the interaction energy between units within the 
polytypic layer, thus: 

rN= Rr/Jo, (18) 
where R is the gas constant. If we assume that Jo ~ J~, 
then for the magnesium spinelloids considered above, 
physically reasonable temperatures (e.g. ~1000 K) 
would correspond to normalized ANNNI model tem- 
peratures of between -0 .1  and -0.3.  It therefore 
appears that the approximation made by Price 
(1983a) is not strictly valid, and that the role of 
temperature should not be ignored when considering 
the stability of spinelloid stacking sequences. This 
range of normalized temperature is within the range 
in which the low-temperature expansions used to 
determine the ANNNI phase diagrams are expected 
to be valid. In addition, analysis of the ANNNI model 
predicts that in this temperature range simple poly- 
typic phases such as (2), (12) and (1) should dominate 
over the more complex phases, in keeping with the 
structural simplicity of the observed magnesium sili- 
cate spinelloids. It should be pointed out, however, 
that the approximation made by Smith et al. (1984) 
and by Price & Yeomans (1984) is unlikely to be valid 
either. Although calculations based on potential P 4 a  
indicate that J3 and -/4 are almost vanishingly small, 
potential P l a  indicates that these terms may still be 
significant. Preliminary studies of an axial Ising 
model with interactions up to third neighbours 
(Baretto & Yeomans, private communication) show 
that very similar phase sequences occur for J3 # 0 as 
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for the ANNNI model. (1), (2) and (3) are now 
ground-state phases (Price, 1983a), and (12)together 
with a sequence of higher-order phases are stable at 
finite temperatures near the (1):(2) boundary. Indeed, 
for J3 ~ 0, the phase (12) occupies a more extended 
region of the phase diagram than for J3 = 0. Therefore, 
the existence of higher-order interactions does not 
invalidate the picture presented by Smith et al. (1984) 
and Price & Yeomans (1984). 

We may conclude that the results obtained from 
the computer simulations performed in this study 
have been successfully used to test the validity of the 
assumptions made in theoretical analyses of polytyp- 
ism. Our calculations have revealed that the models 
discussed are essentially sound and that polytypism 
in spinelloids is probably best described by combining 
the two approaches to include the effect both of 
temperature and of further-neighbour interactions. It 
is hoped that in the future similar computer-based 
investigations will be used to test and refine theoreti- 
cal solid-state physics and crystal chemical models 
that describe systems that are not amenable to direct 
experimental investigation. 
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